Solutions - Homework 2

(Due date: February 4th @ 11:59 pm)

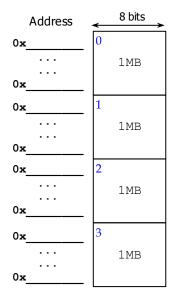
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (28 PTS)

- a) What is the minimum number of bits required to represent: (2 pts)
 - \checkmark 341,000 symbols? [log₂ 341,000] = 19

✓ Numbers between (and including) 0 and 8,192? $\lceil \log_2 8,193 \rceil = 14$

- b) A microprocessor has a memory space of 4 MB. Each memory address occupies one byte.
 (8 pts)
 - What is the address bus size (number of bits of the address) of this microprocessor?


Since $4MB = 2^{22}$ bytes, the address bus size is 22 bits.

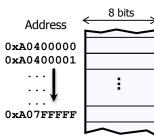
- What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor?

With 22 bits, the address range is 0x000000 to 0x3FFFFF.

- The figure to the right shows four memory chips that are placed in the given positions:
 - Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips.

8 bits	←	Address						
	0	0x000000 0x000001	0000: 0001:	0000	0000	0000	0000	00
1MB		 0x0FFFFF		1111	1111	1111	1111	00
	1	0x100000 0x100001		0000	0000	0000	0000	01 01
1MB		0x100001 0x1FFFFF		1111	1111	1111	1111	01
1MB	2	0x200000 0x200001		0000	0000	0000	0000	10
THD		0x2FFFFF	1111:	1111	1111	1111	1111	10
1MB	3	0x300000 0x300001	0000: 0001:	0000	0000	0000	0000	11 11
TLID		 0x3FFFFF	1111:	1111	1111	1111	1111	11

c) A microprocessor has a 32-bit address line. The size of the memory contents of each address is 8 bits. The memory space is defined as the collection of memory positions the processor can address. (6 pts)


1

- What is the address range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? What is the size (in bytes, KB, or MB) of the memory space? 1KB = 2¹⁰ bytes, 1MB = 2²⁰ bytes, 1GB = 2³⁰ bytes. (2 pts) Address Range: 0x00000000 to 0xFFFFFFFFF.

With 32 bits, we can address 2^{32} bytes, thus we have $2^22^{30} = 4GB$ of address space.

- A memory device is connected to the microprocessor. Based on the size of the memory, the microprocessor has assigned the addresses <code>0xA0400000</code> to <code>0xA07FFFFF</code> to this memory device.

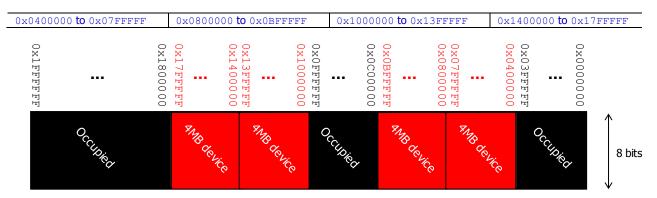
- What is the size (in bytes, KB, or MB) of this memory device?
- What is the minimum number of bits required to represent the addresses only for this memory device?

Instructor: Daniel Llamocca

8 bits

As per the figure, we only need 22 bits for the address in the given range (where the memory device is located). Thus, the size of the memory device is $2^{22} = 4MB$.

- d) The figure below depicts the entire memory space of a microprocessor. Each memory address occupies one byte. (12 pts)
 - What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor?


Address space: 0×0000000 to 0×1 FFFFFF. To represent all these addresses, we require 25 bits. So, the address bus size of the microprocessor is 25 bits. The size of the memory space is then $2^{25}=32$ MB.

- If we have a memory chip of 4MB, how many bits do we require to address 4MB of memory? (2 pts)

 $4MB = 2^{22}$ bytes. Thus, we require 22 bits to address only the memory device.

- We want to connect the 4MB memory chip to the microprocessor. For optimal implementation, we must place those 4MB in an address range where every single address shares some MSBs (e.g.: 0x1C00000 to 0x1FFFFFFF). Provide a list of all the possible address ranges that the 4MB memory chip can occupy. You can only use any of the non-occupied portions of the memory space as shown below. (8 pts)

The 22-bit address range for an 4MB memory would be: 0×0000000 to 0×03 FFFFF. To place this range within the 25-bit memory space in the figure, we have four options:

PROBLEM 2 (32 PTS)

- In ALL these problems (a, b, c), you MUST show your conversion procedure. **No procedure** ≡ zero points.
 - a) Convert the following decimal numbers to their 2's complement representations: binary and hexadecimal. (12 pts)
 ✓ 101.3125, -64.6875, -31.65625.

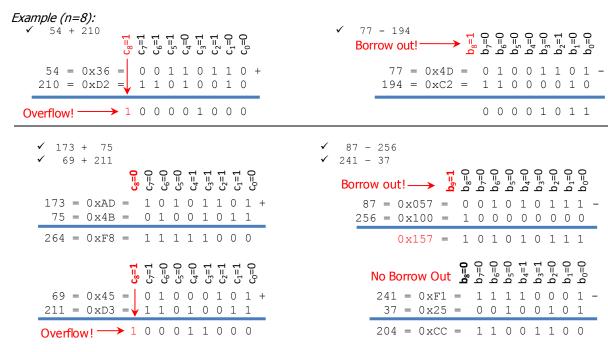
```
□ 101.3125 = 01100101.0101 = 0x65.5

□ +64.6875 = 01000000.1011 \rightarrow -64.6875 = 1110111111.0101 = 0xFBF.5

□ 31.65625 = 011111.10101 \rightarrow -31.6525 = 100000.01011 = 0xE0.51
```

b) Complete the following table. The decimal numbers are unsigned: (6 pts)

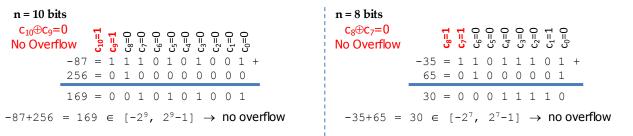
Decimal	BCD	Binary	Reflective Gray Code
278	001001111000	100010110	110011101
171	000101110001	10101011	11111110
217	001000010111	11011001	10110101
186	000110000110	10111010	11100111
265	001001100101	100001001	110001101
957	100101010111	1110111101	1001100011

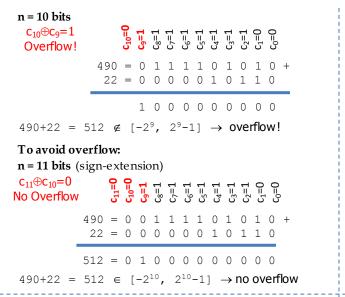

2

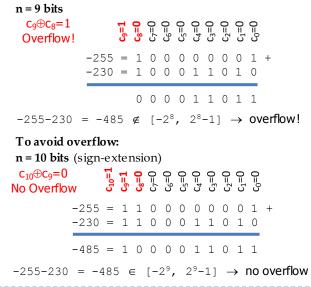
c)	Complete the following	table. Use the	fewest number of	f bits in	each case: (14 r	ots)
----	------------------------	----------------	------------------	-----------	--------------	------	------

	REPRESENTATION					
Decimal	Sign-and-magnitude	1's complement	2's complement			
-257	1 100000001	1011111110	1011111111			
-64	11000000	10111111	1000000			
-256	1 100000000	1011111111	100000000			
-39	1100111	1011000	1011001			
145	010010001	010010001	010010001			
-128	110000000	101111111	10000000			
-125	<mark>1</mark> 1111101	10000010	10000011			

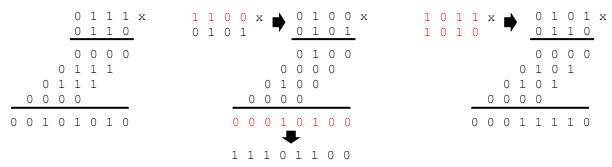
PROBLEM 3 (30 PTS)


a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (8 pts)

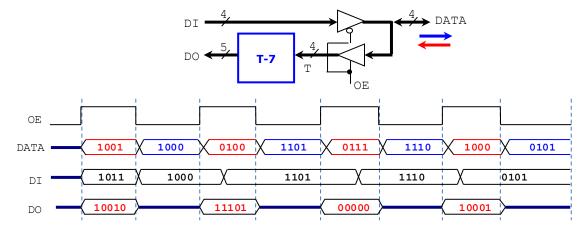

b) We need to perform the following operations, where numbers are represented in 2's complement: (16 pts)


```
\checkmark -87 + 256 \checkmark -35 + 65 \checkmark 490 + 22 \checkmark -255 - 230
```

- For each case:
 - Determine the minimum number of bits required to represent both summands. You might need to sign-extend one of the summands, since for proper summation, both summands must have the same number of bits.
 - ✓ Perform the binary addition in 2's complement arithmetic. The result must have the same number of bits as the summands.
 - ✓ Determine whether there is overflow by:
 - i. Using c_n , c_{n-1} (carries).
 - ii. Performing the operation in the decimal system and checking whether the result is within the allowed range for n bits, where n is the minimum number of bits for the summands.
 - If we want to avoid overflow, what is the minimum number of bits required to represent both the summands and the result?



3



c) Get the multiplication results of the following numbers that are represented in 2's complement arithmetic with 4 bits. (6 pts)
✓ 0111×0110, 1100×0101, 1011×1010.

PROBLEM 4 (10 PTS)

- Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box computes the signed operation T-7, with the result having 5 bits. T is a 4-bit signed (2C) number.
- For example: if $T=1010 \rightarrow DO=1010-0111 = 11010 + 11001 = 10011$

4